**- Frequency**

**- Used antenna**(antenna gain)

**- Cable damping**and/or external

**attenuator damping**

**- Used RBW**(filter bandwidth)

A formula how to calculate power density is shown in the manual (Chapter 16.3 / Calculating power density [W/m²] from power [dBm]) on page 59.

Second its stupid to measure fix in

**µ**W/m² only. The value changes are so big that the number-handling gets allmost impossible (see examples) thats why SPECTRAN uses a auto-range feature (automatic switching between p, µ, n, m etc.).

Some examples:

If you use our HyperLOG antenne, our 1m SMA cable and a

**HF-6060 V4**you get the following

**MAXIMUM**specs at

**0dBm**(which is the maximum input power the HF-6060 V4 can handle):

**1GHz**= 0,055W/m² = 55

**m**W/m² = 55000

**µ**W/m²

**2GHz**= 0,22W/m² = 220

**m**W/m² = 220000

**µ**W/m²

**6GHz**= 2W/m² = 2000

**m**W/m² = 2000000

**µ**W/m²

If you use the

**HF-60100 V4**instead you can handle up to +20dBm which will result in the following

**MAXIMUM**specs at

**+20dBm**:

**1GHz**= 5,5W/m² = 5500

**m**W/m² = 5500000

**µ**W/m²

**2GHz**= 22W/m² = 22000

**m**W/m² = 22000000

**µ**W/m²

**6GHz**= 220W/m² = 200000

**m**W/m² = 200000000

**µ**W/m²

At

**-100dBm**(which you can already reach with a

**1MHz RBW**) you would get the following

**MINIMUM**specs:

**1GHz**= 0,0000000000055W/m² = 0,0000000055

**m**W/m² = 0,0000055

**µ**W/m²

**2GHz**= 0,000000000022W/m² = 0,000000022

**m**W/m² = 0,000022

**µ**W/m²

**6GHz**= 0,0000000002W/m² = 0,0000002

**m**W/m² = 0,0002

**µ**W/m²

If you use smaller filter you can go MUCH lower (

**every 20dB you have a 100times lower power density**)